strength-weight ratio - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

strength-weight ratio - перевод на русский

MATERIAL'S STRENGTH (FORCE PER UNIT AREA AT FAILURE) DIVIDED BY ITS DENSITY
Strength to weight ratio; Self support length; Tenacity (textile strength); Free breaking length; Strength-to-weight ratio; Breaking length; Self-support length; Strength/weight ratio; Strength/weight; List of strength of materials; List of strengths of various materials; List of material strengths; Critical length; Strength-to-mass ratio
Найдено результатов: 1557
strength-weight ratio      

строительное дело

коэффициент конструктивного качества (материала)

strength-weight ratio      
коэффициент конструктивного качества (материала)
critical length         

общая лексика

критическая длина

breaking length         

общая лексика

разрывная длина

weigh         
  • Ancient Greek]] official bronze weights dating from around the 6th century BC, exhibited in the [[Ancient Agora Museum]] in Athens, housed in the [[Stoa of Attalus]].
  • 0}} in 0.86 seconds. This is a horizontal acceleration of 5.3{{spaces}}g. Combined with the vertical g-force in the stationary case the [[Pythagorean theorem]] yields a g-force of 5.4{{spaces}}g. It is this g-force that causes the driver's weight if one uses the operational definition. If one uses the gravitational definition, the driver's weight is unchanged by the motion of the car.
  • A [[weighbridge]], used for weighing trucks
  • work=Baburnama}}</ref>
  • moments]] acting on it sum to zero).
FORCE ACTING ON A MASS DUE TO GRAVITY
Gross weight; Measure of weight; Weigh; Net weight; Nett weight; Weighty; Weighing; Ponderous; Gross rail load; Laden weight; Units of weight; Wieght; Heaviness
1) подъем
2) поднимать
3) нагружать
4) весить
5) сниматься с якоря
gross weight         
  • Ancient Greek]] official bronze weights dating from around the 6th century BC, exhibited in the [[Ancient Agora Museum]] in Athens, housed in the [[Stoa of Attalus]].
  • 0}} in 0.86 seconds. This is a horizontal acceleration of 5.3{{spaces}}g. Combined with the vertical g-force in the stationary case the [[Pythagorean theorem]] yields a g-force of 5.4{{spaces}}g. It is this g-force that causes the driver's weight if one uses the operational definition. If one uses the gravitational definition, the driver's weight is unchanged by the motion of the car.
  • A [[weighbridge]], used for weighing trucks
  • work=Baburnama}}</ref>
  • moments]] acting on it sum to zero).
FORCE ACTING ON A MASS DUE TO GRAVITY
Gross weight; Measure of weight; Weigh; Net weight; Nett weight; Weighty; Weighing; Ponderous; Gross rail load; Laden weight; Units of weight; Wieght; Heaviness
gross weight вес брутто
ponderous         
  • Ancient Greek]] official bronze weights dating from around the 6th century BC, exhibited in the [[Ancient Agora Museum]] in Athens, housed in the [[Stoa of Attalus]].
  • 0}} in 0.86 seconds. This is a horizontal acceleration of 5.3{{spaces}}g. Combined with the vertical g-force in the stationary case the [[Pythagorean theorem]] yields a g-force of 5.4{{spaces}}g. It is this g-force that causes the driver's weight if one uses the operational definition. If one uses the gravitational definition, the driver's weight is unchanged by the motion of the car.
  • A [[weighbridge]], used for weighing trucks
  • work=Baburnama}}</ref>
  • moments]] acting on it sum to zero).
FORCE ACTING ON A MASS DUE TO GRAVITY
Gross weight; Measure of weight; Weigh; Net weight; Nett weight; Weighty; Weighing; Ponderous; Gross rail load; Laden weight; Units of weight; Wieght; Heaviness
ponderous adj. 1) тяжелый, громоздкий, увесистый 2) тяжеловесный 3) скучный, тягучий; a ponderous speech - скучный, нудный доклад Syn: see massive
power-to-weight ratio         
CALCULATION COMMONLY APPLIED TO ENGINES AND MOBILE POWER SOURCES
Power to weight ratio; Power loading; Power/mass; Hp/t; Horsepower/ton; Horsepower/tonne; Horsepower per ton; Horsepower per tonne; Power:weight; Power/weight; Power/weight ratio; Power:weight ratio; Power-to-weight; Power to weight; Weight-to-power ratio; Weight to power ratio; Weight ratio; Power-weight ratio; Hp/tonne; Hp/ton; W/kg; Specific power

машиностроение

мощность удельная

ponderous         
  • Ancient Greek]] official bronze weights dating from around the 6th century BC, exhibited in the [[Ancient Agora Museum]] in Athens, housed in the [[Stoa of Attalus]].
  • 0}} in 0.86 seconds. This is a horizontal acceleration of 5.3{{spaces}}g. Combined with the vertical g-force in the stationary case the [[Pythagorean theorem]] yields a g-force of 5.4{{spaces}}g. It is this g-force that causes the driver's weight if one uses the operational definition. If one uses the gravitational definition, the driver's weight is unchanged by the motion of the car.
  • A [[weighbridge]], used for weighing trucks
  • work=Baburnama}}</ref>
  • moments]] acting on it sum to zero).
FORCE ACTING ON A MASS DUE TO GRAVITY
Gross weight; Measure of weight; Weigh; Net weight; Nett weight; Weighty; Weighing; Ponderous; Gross rail load; Laden weight; Units of weight; Wieght; Heaviness

['pɔnd(ə)rəs]

общая лексика

тяжелый

громоздкий

прилагательное

общая лексика

тяжёлый

тяжеловесный

увесистый

массивный

громоздкий

скучный

нудный

тяжеловесный (о стиле)

трудный (о задании, задаче)

тяжелый, громоздкий, увесистый

скучный, тягучий

синоним

massive

net weight         
  • Ancient Greek]] official bronze weights dating from around the 6th century BC, exhibited in the [[Ancient Agora Museum]] in Athens, housed in the [[Stoa of Attalus]].
  • 0}} in 0.86 seconds. This is a horizontal acceleration of 5.3{{spaces}}g. Combined with the vertical g-force in the stationary case the [[Pythagorean theorem]] yields a g-force of 5.4{{spaces}}g. It is this g-force that causes the driver's weight if one uses the operational definition. If one uses the gravitational definition, the driver's weight is unchanged by the motion of the car.
  • A [[weighbridge]], used for weighing trucks
  • work=Baburnama}}</ref>
  • moments]] acting on it sum to zero).
FORCE ACTING ON A MASS DUE TO GRAVITY
Gross weight; Measure of weight; Weigh; Net weight; Nett weight; Weighty; Weighing; Ponderous; Gross rail load; Laden weight; Units of weight; Wieght; Heaviness
чистый вес, вес нетто, вес без упаковки

Определение

НЕЛИКВИД
имущество, которое не может быть использовано в данном предприятии и подлежит ликвидации, продаже.
Продажа неликвидов.

Википедия

Specific strength

The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa⋅m3/kg, or N⋅m/kg, which is dimensionally equivalent to m2/s2, though the latter form is rarely used. Specific strength has the same units as specific energy, and is related to the maximum specific energy of rotation that an object can have without flying apart due to centrifugal force.

Another way to describe specific strength is breaking length, also known as self support length: the maximum length of a vertical column of the material (assuming a fixed cross-section) that could suspend its own weight when supported only at the top. For this measurement, the definition of weight is the force of gravity at the Earth's surface (standard gravity, 9.80665 m/s2) applying to the entire length of the material, not diminishing with height. This usage is more common with certain specialty fiber or textile applications.

The materials with the highest specific strengths are typically fibers such as carbon fiber, glass fiber and various polymers, and these are frequently used to make composite materials (e.g. carbon fiber-epoxy). These materials and others such as titanium, aluminium, magnesium and high strength steel alloys are widely used in aerospace and other applications where weight savings are worth the higher material cost.

Note that strength and stiffness are distinct. Both are important in design of efficient and safe structures.

Как переводится strength-weight ratio на Русский язык